Disjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs
نویسندگان
چکیده
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and nonconvex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the liftand-project methodology. In particular, we propose new methods for generating valid inequalities by using the equation Y = xx . We use the concave constraint 0 < Y − xx to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y −xx T with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint Y − xx < 0 to derive convex quadratic cuts and combine both approaches in a cutting plane algorithm. We present preliminary computational results to illustrate our findings.
منابع مشابه
Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-a...
متن کاملElementary closures for integer programs ( G
In integer programming, the elementary closure associated with a family of cuts is the convex set de ned by the intersection of all the cuts in the family. In this paper, we compare the elementary closures arising from several classical families of cuts: three versions of Gomory’s fractional cuts, three versions of Gomory’s mixed integer cuts, two versions of intersection cuts and their strengt...
متن کاملConvex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations
A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher dimensional space by introducing variables Yij to represent each of the products xixj of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint ...
متن کاملElementary closures for integer programs
In integer programming, the elementary closure associated with a family of cuts is the convex set de ned by the intersection of all the cuts in the family. In this paper, we compare the elementary closures arising from several classical families of cuts: three versions of Gomory's fractional cuts, three versions of Gomory's mixed integer cuts, two versions of intersection cuts and their strengt...
متن کاملImproved quadratic cuts for convex mixed-integer nonlinear programs
This paper presents scaled quadratic cuts based on scaling the second-order Taylor expansion terms for the decomposition methods Outer Approximation (OA) and Partial Surrogate Cuts (PSC) used for solving convex Mixed Integer Nonlinear Programing (MINLP). The scaled quadratic cut is proved to be a stricter and tighter underestimation for the convex nonlinear functions than the classical supporti...
متن کامل